Control of Rubisco function via homeostatic equilibration of CO2 supply

نویسنده

  • Abir U. Igamberdiev
چکیده

Rubisco is the most abundant protein on Earth that serves as the primary engine of carbon assimilation. It is characterized by a slow rate and low specificity for CO2 leading to photorespiration. We analyze here the challenges of operation of this enzyme as the main carbon fixation engine. The high concentration of Rubisco exceeds that of its substrate CO2 by 2-3 orders of magnitude; however, the total pool of available carbon in chloroplast, i.e., mainly bicarbonate, is comparable to the concentration of Rubisco active sites. This makes the reactant stationary assumption (RSA), which is essential as a condition of satisfying the Michaelis-Menten (MM) kinetics, valid if we assume that the delivery of CO2 from this pool is not limiting. The RSA is supported by active carbonic anhydrases (CA) that quickly equilibrate bicarbonate and CO2 pools and supply CO2 to Rubisco. While the operation of stromal CA is independent of light reactions, the thylakoidal CA associated with PSII and pumping CO2 from the thylakoid lumen is coordinated with the rate of electron transport, water splitting and proton gradient across the thylakoid membrane. At high CO2 concentrations, CA becomes less efficient (the equilibrium becomes unfavorable), so a deviation from the MM kinetics is observed, consistent with Rubisco reaching its Vmax at approximately 50% lower level than expected from the classical MM curve. Previously, this deviation was controversially explained by the limitation of RuBP regeneration. At low ambient CO2 and correspondingly limited capacity of the bicarbonate pool, its depletion at Rubisco sites is relieved in that the enzyme utilizes O2 instead of CO2, i.e., by photorespiration. In this process, CO2 is supplied back to Rubisco, and the chloroplastic redox state and energy level are maintained. It is concluded that the optimal performance of photosynthesis is achieved via the provision of continuous CO2 supply to Rubisco by carbonic anhydrases and photorespiration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of CO2 fixation in photosynthetic cells via thermodynamic buffering

Stable operation of photosynthesis is based on the establishment of local equilibria of metabolites in the Calvin cycle. This concerns especially equilibration of stromal contents of adenylates and pyridine nucleotides and buffering of CO₂ concentration to prevent its depletion at the sites of Rubisco. Thermodynamic buffering that controls the homeostatic flux in the Calvin cycle is achieved by...

متن کامل

Reductions of Rubisco activase by antisense RNA in the C4 plant Flaveria bidentis reduces Rubisco carbamylation and leaf photosynthesis.

To function, the catalytic sites of Rubisco (EC 4.1.1.39) need to be activated by the reversible carbamylation of a lysine residue within the sites followed by rapid binding of magnesium. The activation of Rubisco in vivo requires the presence of the regulatory protein Rubisco activase. This enzyme is thought to aid the release of sugar phosphate inhibitors from Rubisco's catalytic sites, there...

متن کامل

Does Chloroplast Size Influence Photosynthetic Nitrogen Use Efficiency?

High nitrogen (N) supply frequently results in a decreased photosynthetic N-use efficiency (PNUE), which indicates a less efficient use of accumulated Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Chloroplasts are the location of Rubisco and the endpoint of CO2 diffusion, and they play a vital important role in photosynthesis. However, the effects of chloroplast development on phot...

متن کامل

Coordination of green supply chain network, considering uncertain demand and stochastic CO2 emission level

Many supply chain problems involve optimization of various conflicting objectives. This paper formulates a green supply chain network throughout a two-stage mixed integer linear problem with uncertain demand and stochastic environmental respects level. The first objective function of the proposed model considers minimization of supply chain costs while the second objective function minimizes CO...

متن کامل

Antisense Reduction of NADP-Malic Enzyme in Flaveria bidentis Reduces Flow of CO2 through the C4 Cycle [W][OA]

An antisense construct targeting the C4 isoform of NADP-malic enzyme (ME), the primary enzyme decarboxylating malate in bundle sheath cells to supply CO2 to Rubisco, was used to transform the dicot Flaveria bidentis. Transgenic plants (a-NADP-ME) exhibited a 34% to 75% reduction in NADP-ME activity relative to the wild type with no visible growth phenotype. We characterized the effect of reduci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015